skip to main content


Search for: All records

Creators/Authors contains: "Hu, Yongxiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The change in planetary albedo due to aerosol−cloud interactions during the industrial era is the leading source of uncertainty in inferring Earth’s climate sensitivity to increased greenhouse gases from the historical record. The variable that controls aerosol−cloud interactions in warm clouds is droplet number concentration. Global climate models demonstrate that the present-day hemispheric contrast in cloud droplet number concentration between the pristine Southern Hemisphere and the polluted Northern Hemisphere oceans can be used as a proxy for anthropogenically driven change in cloud droplet number concentration. Remotely sensed estimates constrain this change in droplet number concentration to be between 8 cm −3 and 24 cm −3 . By extension, the radiative forcing since 1850 from aerosol−cloud interactions is constrained to be −1.2 W⋅m −2 to −0.6 W⋅m −2 . The robustness of this constraint depends upon the assumption that pristine Southern Ocean droplet number concentration is a suitable proxy for preindustrial concentrations. Droplet number concentrations calculated from satellite data over the Southern Ocean are high in austral summer. Near Antarctica, they reach values typical of Northern Hemisphere polluted outflows. These concentrations are found to agree with several in situ datasets. In contrast, climate models show systematic underpredictions of cloud droplet number concentration across the Southern Ocean. Near Antarctica, where precipitation sinks of aerosol are small, the underestimation by climate models is particularly large. This motivates the need for detailed process studies of aerosol production and aerosol−cloud interactions in pristine environments. The hemispheric difference in satellite estimated cloud droplet number concentration implies preindustrial aerosol concentrations were higher than estimated by most models. 
    more » « less
  2. Abstract. Ocean color remote sensing is a challenging task over coastal watersdue to the complex optical properties of aerosols and hydrosols. Inorder to conduct accurate atmospheric correction, we previously implementeda joint retrieval algorithm, hereafter referred to as the Multi-Angular Polarimetric Ocean coLor (MAPOL) algorithm,to obtain the aerosol and water-leavingsignal simultaneously.The MAPOL algorithm has been validated with syntheticdata generated by a vector radiative transfer model, and good retrievalperformance has been demonstrated in terms of both aerosol and oceanwater optical properties (Gao et al., 2018).In this work we applied the algorithm to airborne polarimetricmeasurements from the Research Scanning Polarimeter (RSP) over bothopen and coastal ocean waters acquired in twofield campaigns: the Ship-Aircraft Bio-Optical Research (SABOR) in2014 and the North Atlantic Aerosols and Marine Ecosystems Study(NAAMES) in 2015 and 2016. Two different yet related bio-opticalmodels are designed for ocean water properties. One model aligns withtraditional open ocean water bio-optical models that parameterize theocean optical properties in terms of the concentration of chlorophyll a. The other is a generalized bio-optical model for coastal watersthat includes seven free parameters to describe the absorption andscattering by phytoplankton, colored dissolved organic matter, andnonalgal particles. The retrieval errors of both aerosol opticaldepth and the water-leaving radiance are evaluated. Through thecomparisons with ocean color data products from both in situmeasurements and the Moderate Resolution Imaging Spectroradiometer(MODIS), and the aerosol product from both the High SpectralResolution Lidar (HSRL) and the Aerosol Robotic Network (AERONET), the MAPOL algorithm demonstrates both flexibility and accuracy in retrievingaerosol and water-leaving radiance properties under various aerosoland ocean water conditions.

     
    more » « less